Enhancement of Electrochemical Performance of LiMn2O4 Spinel Cathode Material by Synergetic Substitution with Ni and S

نویسندگان

  • Monika Bakierska
  • Michał Świętosławski
  • Marta Gajewska
  • Andrzej Kowalczyk
  • Zofia Piwowarska
  • Lucjan Chmielarz
  • Roman Dziembaj
  • Marcin Molenda
چکیده

Nickel and sulfur doped lithium manganese spinels with a nominal composition of LiMn2-xNixO4-ySy (0.1 ≤ x ≤ 0.5 and y = 0.01) were synthesized by a xerogel-type sol-gel method followed by subsequent calcinations at 300 and 650 °C in air. The samples were investigated in terms of physicochemical properties using X-ray powder diffraction (XRD), transmission electron microscopy (EDS-TEM), N₂ adsorption-desorption measurements (N₂-BET), differential scanning calorimetry (DSC), and electrical conductivity studies (EC). Electrochemical characteristics of Li/Li⁺/LiMn2-xNixO4-ySy cells were examined by galvanostatic charge/discharge tests (CELL TEST), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The XRD showed that for samples calcined at 650 °C containing 0.1 and 0.2 mole of Ni single phase materials of Fd-3m group symmetry and nanoparticles size of around 50 nm were obtained. The energy dispersive X-ray spectroscopy (EDS) mapping confirmed homogenous distribution of nickel and sulfur in the obtained spinel materials. Moreover, it was revealed that the adverse phase transition at around room temperature typical for the stoichiometric spinel was successfully suppressed by Ni and S substitution. Electrochemical results indicated that slight substitution of nickel (x = 0.1) and sulfur (y = 0.01) in the LiMn₂O₄ enhances the electrochemical performance along with the rate capability and capacity retention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of LiFePO4 Coating on Electrochemical Performance of LiMn2O4 Cathode Material

LiMn2O4 spinel cathode materials have been successfully synthesized by solid-state reaction. Surface of these particles were modified by nanostructured LiFePO4 via sol gel dip coating method. Synthesized products were characterized by thermally analyzed by Thermogravimetric and Differential Thermal Analysis(TG/DTA), X-Ray Diffraction (XRD), Scanning Electron...

متن کامل

Electronic , Structural , and Electrochemical Properties of LiNi x Cu y Mn 2 x y O 4 ( 0 < x < 0 . 5 , 0 < y < 0 . 5 ) High - Voltage Spinel Materials

LiMn2O4 spinel is an attractive compound as a cathode material in lithium-ion batteries, due to its economical, environment, and safety advantages over LiCoO2. LiMn2O4 adopts the spinel structure with the space group Fd3 hm, in which the Li and Mn occupy the 8a tetrahedral and 16d octahedral sites of the cubic close-packed oxygen ions framework, respectively. However, LiMn2O4 tends to exhibit c...

متن کامل

Nature of the Electrochemical Properties of Sulphur Substituted LiMn2O4 Spinel Cathode Material Studied by Electrochemical Impedance Spectroscopy

In this work, nanostructured LiMn₂O₄ (LMO) and LiMn₂O3.99S0.01 (LMOS1) spinel cathode materials were comprehensively investigated in terms of electrochemical properties. For this purpose, electrochemical impedance spectroscopy (EIS) measurements as a function of state of charge (SOC) were conducted on a representative charge and discharge cycle. The changes in the electrochemical performance of...

متن کامل

افزایش عملکرد سیکلی ماده کاتدی LiMn2O4 باتری‌های یون- لیتیومی توسط نانو ساختارفسفاتی LiFePO4

In this paper, LiMn2O4 spinel cathode materials have been successfully synthesized by solid-state reaction. Surface of these particles modified by nanocoating of LiFePO4. &nbsp;Synthesized products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectroscopy (EDX). The results of electrochemical tests showed that charge/discharge ca...

متن کامل

Cycling behaviour of barium doped LiMn2O4 cathode materials for Li ion secondary batteries

In order to improve the cycling performance of LiMn2O4, the spinel phase LiMn2–xBaxO4 (x = 0.01, 0.02 and 0.05) compounds were fabricated by the glycine-nitrate method. The structures of the products were investigated by X-ray diffraction. Electrochemical studies were carried out using the Li|LiMn2O4 and Li|LiMn2–xBaxO4 cells. The capacity loss of Li|LiMn2O4 cell is about 15% after 30 cycles, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016